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The problem of the cooling of a spherical volume of air after departure of a shock wave in air of normal 
density is studied numerically. Based on the results obtained, a conclusion is made that no radiative cooling 
wave exists in a real atmosphere. 

In [1-3 ] a mechanism is suggested and a theoretical model is developed for radiative cooling of heated air 

after departure of a shock wave. In the formulation of the problem, the authors ignored the reverse motion arising 

inside the hot spherical volume. Moreover, it is hypothesized that this region continuously expands. In [4 ], it is 

necessary to take into account the air motion due to local cooling at the wave front and an analytical study is made 

of a complete system of radiative gasdynamic (RGD) equations for this problem under the assumption of stationarity 

of the cooling wave. Based on the solution obtained, the conclusion is made that with account for the motion the 

mechanism of cooling by means of a stationary radiative cooling wave is not realized. However, the authors note 

that the existence of a transient cooling wave remains in question. In order to answer this question, a problem 

based on a complete system of RGD equations in the nonstationary formulation is studied numerically here. 

The authors report the results of modeling of cooling of a hot spherical volume of air after departure of a 

strong shock wave in an air atmosphere with a density ofp -- 1.29. l0 -3 g" cm -3. Temperature profiles are obtained 

for the time interval bounded below by the moment of establishment of the normal pressure in the region of interest 

and above by the moment of brightening of the heated volume, i.e., by a decrease in the temperature at the center 

of the sphere to the temperature of transparency of the air (0.6-0.8 eV). 

We consider a problem that models the hydrodynamic expansion and cooling of a large spherical volume 

of highly heated air with the initial energy E 0 and radius R 0. These parameters are chosen so that the temperature 

inside is higher than 105 K and the linear dimensions of the heated region exceed 100 m. Just such a problem is 

discussed in [1 ]. 

The hydrodynamic regime of expansion of the heated region in this formulation is described by a system 

of nonstationary equations of gas dynamics for a 0he-dimensional spherical geometry. For this class of problems 

it is convenient to write the equations in Lagrange variables [5 ]: 

o l  0 2 0 2 0  o 
o t p -  osrV;  ~ v = - r  -~sp; - ~ r = v ;  

O-t e+  =-O--~(p ) -  S; p = p ( 7 ,  T), e = e ( p ,  r ) .  (1) 

The term (O/Os)S represents energy release in the medium not associated with hydrodynamic transfer of energy. 

In our problem, it describes the energy release due to radiation processes in the heated air. In order to evaluate 

the radiation fluxes, we employ the diffusional approximation, which is valid for our problem in the region under 

consideration within the whole time interval [1, 3 ]. Based on the above, we write the equations in a one-dimensional 

spherical geometry for the multigroup approximation relative to the spectrum: 
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Fig. 1. Time variation of the temperature at the center of the heated region 

(r = 0). T, eV; t, sec. 

Fig. 2. Spatial distribution of the temperature (a) and radiation flux (b) for 

different moments of time. r, m; S, W'cm -1. 
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The thermodynamic properties of air in the range of specific internal energies 0.37-2.5.104 kJ.g -1 were 

specified in the form of tables [6] as the functional dependence log T = f  (ln p, In e). For energies below and above 

the indicated limits, we used the equation of state of an ideal gas for the cold and the fully ionized air, respectively. 

The optical properties of air were also described in tables in the multigroup approximation in the form of 

the functional dependence 

In xij k = f (In Pi , In Tj , k) 

( i =  1 . . . . .  l l , j =  1 . . . . .  39, k =  1 . . . .  -, Ng). 

The spectral properties of the medium are taken into account in the six-group approximation in the ranges  

0 .015-0.511-1.41-2.71-4.51-6.52.  Use was made of absorption coefficients averaged both according to Planck 

and to Rosseland within the indicated limits. Tables of the coefficients were composed for the temperature range 

0.03-1778 eV. For low temperatures of 0.03-2 eV they were obtained using the data from [7 ], for temperatures 

above 2 eV the coefficients for air were taken from [8 ]. 
We calculated the diffusional system of radiative transfer equations (2) using a scheme obtained by 

matching, at the nodes of a three-dimensional grid, the analytical solutions of the diffusion equations for optically 

homogeneous cells under the assumption of spatial linearity of the temperature portion of the radiation sources Q. 
The system of linear finite-difference equations approximating the diffusion equations was solved by the method 

of matrix elimination. In the diffusion equations, we used the Planck mean group absorption coefficients for air. 

Since the expressions for the coefficients of the linear equations of this system are bulky, we do not cite the system. 

To check the realized algorithm, we performed test calculations of heat propagation in the case of radiant heat 

conduction. The results of the numerical calculations agree welt with the analytical calculation. 

To calculate the gasdynamic parameters, we used a completely conservative scheme whose finite-difference 

form is as follows [5 ]: 
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Fig. 3. Spatial distribution of the velocity (a) and density (b) of the heated 

region for several moments of time. v, m'sec -I', p, g.cm -3 

1)  = (Rv(0.5)) s ; et = _ p(a) (Rv(0.5)) s vt = RP~a)" rt = v(0'5)" P t 

where R = (r 2 + r7+72) /3 ;  c~ is a free parameter, 0 -<c~-< 1 (in the calculations we used a = 0.5); Ps = 

(Pi+ 1/'2 +- P i - 1 / 2 ) / 0 . 5 ( h i  + h i - 1 )  is the derivative of the backward pressure on a nonuniform three-dimensional grid. 
To calculate the shock wave, an artificial viscosity was introduced: the quadratic Wa --- 1.2, the linear Wfl 

= 0.6. These coefficients were chosen based on results obtained by test calculations. Calculations of the common 

test problems of breakdown of pressure discontinuity, a point explosion, and a piston moving at a constant speed 

showed good agreement with analytical solutions, thus giving the possibility of correctly describing the physics of 

processes upon solving real gasdynamic problems. In such a manner we obtained a closed finite-difference scheme 

for modeling the problem of the cooling of air after departure of a shock wave. 

For modeling, we used a nonuniform mass grid with a fixed number of cells. When a disturbance reaches 

the bounds of the calculation region, the sizes of the cells are doubled. In the calculation, upon reaching the required 

moment (1 sec in our case) the calculation region was localized within the heated volume to allow a detailed 

description of the medium parameters in this region. 
The calculation results in Figs. 1-3 show the dynamics of the cooling of a spherical volume of heated air 

with R--103 m. At a late stage (by 1 sec), the shock wave is far beyond the grid used for our problem. By this 

moment, the pressure within the entire region is 1 atm and, as seen in Fig. 2, the heated region continues to 

broaden slightly - the velocity inside the volume is less than 100 m. sec -1. Simultaneously, in the region with the 

maximum temperature gradient reverse motion develops, which is caused by a pressure gradient due to local cooling 

at the place where the radiation flux is at its maximum. The form of the temperature profile at this and subsequent 

moments actually resembles that in the case of a cooling wave [1 ], though no distinct step is seen. At the subsequent 

moments, the profile preserves its form and position in space. Changes due to a decrease in the temperature are 

observed only in its high-temperature part. In Fig. 1 the temperature is seen to monotonically decrease at the center 

for the whole time interval, which is contradictory to the concept of a cooling wave. By the moment 1.59 sec (Fig. 

3), almost the entire space of the hot volume is involved in the reverse motion, while the radius of the heated region 

remains constant. In this zone, an equilibrium state is attained: the greater the energy transferred by radiation, 

the higher the pressure gradient and the more intensely the cold air flows in and becomes heated by radiation, 
thus preventing the distinct small temperature step from moving inward. At the same time, the air density at the 

boundary of the hot sphere decreases, but inside the volume it increases and by the moment 2.24 sec it increases 

more than fourfold. With an overall decrease in the temperature, the peak of the radiation flux becomes less 

]pronounced and is displaced toward the center but not as rapidly as the temperature decreases. Already by the 

moment 1.4 sec, when the temperature at the center is still high, the heated region becomes quite transparent, thus 

indicating volume energy losses. However, energy losses for radiation are not the main factor responsible for the 
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temperature decrease in the heated region. The basic portion of the energy is consumed for radiative heating of 

the incoming air. 

To sum up, the heated air after departure of a shock wave releases energy as a result of volume energy 

losses and intense inflow of cold air into the heated region. 
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